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Abstract The present study is in the framework of the pending research 
actions on the hydrological impacts of the drought that struck West Africa for 
almost 30 years, starting at the end of the 1960s. It centred on solving the 
spatial-scale problems existing between the rain fields, as they are presently 
available, and those necessary for the hydrological models. The proposed 
method is based on the coupling of the Gibbs sampler and the acceptance–
rejection algorithm for the simulation of meta-Gaussian rain fields able to 
characterize an integral value representative for a given area by respecting the 
statistical properties of point rain depths. It is applied to the conditional 
simulation of rain fields observed at the Niamey Degree Square raingauge 
during the EPSAT-Niger campaign. The model performance is evaluated by 
comparing the simulated statistical rain field properties with those observed 
for high-resolution Sahelian area. According to the results of this validation, 
the proposed model provides an elegant and convenient answer to the 
conditional simulation of Sahelian rain fields. 
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INTRODUCTION 
 
The drought that struck West Africa for almost 30 years, starting at the end of the 
1960s had dramatic consequences on the water resources, the agriculture and the 
economic development of the sub-region (e.g. Lebel et al., 2000; Le Barbé et al., 
2002). Observations of present rainfall regimes and plausible scenarios for future 
rainfall regimes derived from climatic models have to be considered jointly to charac-
terize the possible impact of climate variability on water resources (Onibon et al., 
2002). The disadvantage is that the spatial resolution of the climatic models is too 
crude to satisfy the needs of hydrology. Stochastic disaggregation models respecting 
intrinsic statistical properties derived from observations constitute one of the solutions 
to this problem. Using the Turning Band Method (TBM) a spatial disaggregation 
model was previously developed, allowing for the non-conditional simulation of 
rainfall fields for climatic regions where rainfall is mostly associated with the 
occurrence of mesoscale convective systems (Guillot, 1998). The weakness of this 
approach is the requirement of a large set of simulation scenarios in order for its use in 
a conditional context. It is proposed here to revisit this model by coupling the Gibbs 
sampler (Geman & Geman, 1984) and the acceptance–rejection simulation method 
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(Von Neuman, 1951). As a preliminary step, the iteration kernel of the proposed 
approach is briefly described. In order to explore the efficiency of the model, it is 
tested on a sample of Sahelian rain fields observed during the EPSAT-Niger 
experiment. The proposed validation of the model permits comparison of observed and 
simulated rain fields statistics obtained for various spatial scales. 
 
 
PRESENTATION OF THE MODEL 
 
The Gaussian transformed function 
 
Let X  denotes a stationary Gaussian random function and Φ  a strictly monotonic and 
non-decreasing function referred hereafter as anamorphosis. In this study, the original 
rain field data of interest are assumed to be characterized by a stationary random 

function ( )XY
L

Φ≡ . Under these conditions, the random function Y  is said to be 
Gaussian transformed and its distribution is characterized by the anamorphosis 
function Φ , the expectation Xµ  and the covariance XC  of the Gaussian function X. 
Assuming that G  is the Gaussian probability function of X and F  the probability 
function of Y, then [ ])()()( XFYFXG Φ== . A detailed mathematical description of 
the Gaussian transformed model may be found in Freulon (1992) and Guillot (1999).  
 
 
Conditional simulation of a Gaussian transformed field 
 
Let z denote the spatial average of the event rainfall, ( ) Niiyy ∈=  the random vector 
representing the values of the process at the nodes of a regular grid and 

),.....,,,....,,( 1121 niii xxxxxx +−− =  the vector comprising all x  except ix . The purpose 
here is to implement the Gaussian transformed model, to generate the vector y  
conditioned by the spatial average value z  over a domain A . When estimating z  from 
the set of observations ( ) Niiyy ∈= , the kriging estimate is: 
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where iλ  are the weighting factors computed by solving the classical kriging matrix 
(Onibon, 2001). If ε  denotes a Gaussian residual of mean zero and standard deviation 
K , this is equivalent to: 
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In terms of probability density functions (pdf), equation (2) can be expressed as:  
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The conditional density function ( )zxf  is unknown and an iterative approach is 
sought involving the successive computation of all the components ix  of the vector x . 
By doing so, we should in principle be able to determine the conditional density 
function ( )zxxf ii ,− . In general this is not possible. But, based on Bayesian considera-
tions, Onibon (2001) showed that the probability density function of ix  conditional on 

),( zx i−  could be expressed as a function of the product of two known distributions, 
except for an unknown coefficient, equation (4): 
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In order to generate each component of x  by respecting equation (4), the random 
Gaussian noise ε  will be generated with the acceptation-rejection algorithm introduced 
in statistic by Von Neuman (1951) and used to simulate random variables character-
ized by a density function totally defined up to a multiplicative constant. Finally, the 
disaggregation algorithm proposed here is based upon the coupling of the Gibbs 
sampler the general objective of which is to sample an n-dimensional random vector 

n
n IRxxxx ∈= ),.....,,( 21  from a multivariate n-dimensional pdf )(xf  when no 

practical algorithm is available for doing so directly, and the acceptance–rejection 
algorithm which are well described in Freulon (1992) and Onibon (2001).  
 The successive steps of the proposed algorithm are as follows: 
Build an initial Gaussian vector 0x , at the jth iteration, and for the ith component: 
(1) calculate the simple kriging estimate SK

ix  and its standard deviation SK
iσ , 

(2) generate a standard zero-mean normal random variable u , 
(3) replace the component 1−j

ix  by uxx SK
i

SK
i

j
i σ+= , 

(4) calculate 
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(5) generate a uniform random variable w , 

(6) if 
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izx

xxg
xh

w i

−

−≤  , then accept j
ix ; else, go to (2). 

Stop the iterations. 
 
 
APPLICATION FOR THE SIMULATION OF SAHELIAN RAINFIELDS 
 
Unconditional simulation of the Niamey Degree Square rain fields 
 
Through the following, we are trying to determine whether the statistical properties of 
Sahelian event rain fields specified in the model were well produced by the algorithm; 
what would confirm that the algorithmic and the numeric aspects are well mastered as 
shown in Table 1, this verification made on a grid of 400 points (very often resampled 
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Table 1 Comparison of the observed and simulated statistical parameters. 

 Mean (mm) Variance (mm2) F0 (%) 
Observations 10.9 200.0 25.4 
Gibbs 10.6 201.3 23.0 
TBM 10.8 190.0 26.0 

 
 
to 30 points, and this for homogeneity with the EPSAT-Niger network) proved to be 
satisfactory for the mean and the standard deviation of point rain depths. However, an 
underestimation of the intermittence (22% instead of 26%) was noticed. It should be 
noted that at this point our algorithm is less efficient than the Turning Band method 
(TBM) used by Guillot (1998), whereas theoretically these two methods should 
equally reproduce the specified properties. In terms of distribution of (1) the points 
rain depths, (2) the mean and, (3) the standard deviation of the events rainfalls, a good 
accord between the two observations and simulations could be noticed (Figs 1, 2(a) 
and 2(b)). However, some differences on the level of the high point rain depth values 
can be noted. Concerning the spatial structure of the event rain fields, a good 
resemblance (Fig. 3) can be noted between the mean variogram of the simulated events 
and the theoretical variogram deducted from the model of covariance imposed in the 
model following the results obtain by Guillot (1998).  
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Fig. 1 Quantile–quantile plot of the observed and simulated point rainfalls. 
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Fig. 2 Quantile–quantile plot of the observed and simulated (a) spatial average rainfall 
and (b) spatial standard deviation. 
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Fig. 3 Comparison of the theoretical variogram with the mean variogram of the 
simulated events. 
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Fig. 4 Cumulative distribution functions: internal variability of the model. 
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Fig. 5 Cumulative distribution functions: observations compared with simulations. 

 
 
Conditional simulation of the Niamey Degree Square rain fields 
 
 Comparison of the cumulative distribution functions As a preliminary step, we 
are studying the internal variability of the model in terms of the cumulative 
distribution of the point rain depths. In conformity with the EPSAT-Niger network 
geometry, the simulated rain fields are re-sampled to 30 points. In Fig. 4, we compare 
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the cumulative distribution curves obtained from various simulations conditioned by 
the spatial average of the event of 12 July 1990. It is noticed that the internal 
variability of the model is strong enough in terms of cumulative frequencies of point 
rain depths. This, far from being a problem, constitutes a very positive result. It 
emphasizes an intrinsic property of the numeric method used here, that is, its aptitude 
to generate, for a given spatial average, different types of distributions of point rain 
depths. Still using the same logic, we are comparing the empirical frequencies of the 
point rain depths observed to those of some simulations. We note that despite the 
internal variability of the model, there is a good agreement between the distributions 
obtained from some simulations and the observed distributions (Fig. 5).  
 

 Spatial structure of the simulated rain fields The basic principle of the spatial 
disaggregation model proposed in this work is based especially on the respect of the 
well-known statistical properties of the event rain fields (Onibon, 2001). In the 
preceding section we studied, in terms of distribution, the realism of rain fields 
simulated conditionally to a spatial average value. To appreciate the spatial structure of 
the simulated rain fields, we compared for each event the patterns of the simulated rain 
fields to those observed. The example presented here is that of the event of 12 July 
1990 observed in the study region. As Fig. 6 shows, the isohyets of the point rain 
depths observed have a tendency to be centred on the network with the high values 
being localized in the centre. This is equally detected by one of the simulated rain 
fields (Fig. 7). Since the spatial organization of the event rainfall is characterized by a 
high degree of randomness, two events characterized by the same spatial average and 
variance could have very different patterns. When comparing the images shown in  
Fig. 7, a very strong variability of the spatial distribution of point rain depth values is 
observed. This result shows the skill of the model in reproducing the large range of 
patterns associated with events with equal magnitude and dispersion. 
 
 
CONCLUSIONS 
 
The aim of the study presented in this manuscript, is to develop an approach which 
allows for spatial disaggregation of low resolution rain fields generated by climatol-
ogical models, in view of possible use for hydrological models. The new method 
proposed allows the implementation of the Gaussian anamorphosis model based on the 
simultaneous use of the Gibbs’ sampler and the acceptance–rejection algorithm. The 
model performance is evaluated by comparing the simulated statistical rain field 
properties with those observed for the high resolution Sahelian area. According to the 
result of the application of the model for the unconditional simulations of rain fields, 
one can conclude that the well-known statistical properties of the observed rain field 
are well reproduced.  
 Furthermore, the real value of the proposed approach lies in its ability of simul-
ation conditional on a known spatial value. Even though a complete validation of the 
model in conditional mode is not possible (it would require several dozen observed 
realizations with the same spatial average), it is possible to assess its realism by 
conditionally simulating several rain fields and comparing them to the observed  
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Fig. 6 Spatial distribution of the observed cumulated values (event of 12 July 1990). 
 

-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120

km

Simulation 1

0

10

20

30

40

50

60

70

80

90

100

110

km

-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120

km

Simulation 2

0

10

20

30

40

50

60

70

80

90

100

110

km

 

-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120

km

Simulation 8

0

10

20

30

40

50

60

70

80

90

100

110

K
m

-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120

km

Simulation 15

0

10

20

30

40

50

60

70

80

90

100

110

km

 
Fig. 7 Examples of the conditional simulations obtained for the event of 12 July 1990. 

 
 
rain field and to other rain fields of similar magnitude. This comparison was carried 
out for an event observed with the dense EPSAT-Niger network. For a given class of 
events, the conditional rain fields have a distribution of point values similar to the 
distribution of observed point values. At the same time the model is producing a wide 
range of spatial patterns corresponding to a single area average. This characteristic 
should allow study of a large spectrum of responses of the hydrological systems to the 
spatial pattern of rainfall in this region. 
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